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The initial-value problem defined by two parallel vortex sheets of opposite sign is 
studied. Strictly two-dimensional, incompressible, nearly inviscid dynamics is assumed 
throughout. The roll-up of the sheets into a vortex street is simulated numerically 
using 4096 point vortices. Much longer runs than in previous work are performed, and 
it is found that only for a finite range of values of the ratio, h/h, of sheet separation to 
perturbation wavelength, does a long-lived vortex street emerge. For h/h 2 0-6 a 
pairing transition within each row intervenes. For h/A ;S 0.3 we find oscillatory 
modes. 

Using up to 16384 point vortices, we also study the breakdown of the metastable 
street to a two-dimensional, turbulent shear flow. The vortex blobs that made up the 
street may merge with others of the same sign after the breakdown, but otherwise 
persist throughout the turbulent regime. Neither their disintegration nor amalgama- 
tion with vortices of opposite sign was observed. Using dimensional arguments we 
derive the relevant scaling theory, and show that it applies to a flow started from two 
random vortex sheets. The resulting turbulence is not self-similar. For the turbulent 
flow that follows from the breakdown of a regular vortex street two length scales with 
different power-law growth in time appear to be necessary. The important differences 
in the asymptotic structure of flows initialized from random and regular sheets leads 
us to question the idea of universality. The influence of the symmetry of the initial 
perturbation on the subsequent development is also considered. 

1. Introduction 
The emergence of a vortex street downstream of a cylinder placed in an oncoming 

steady flow is among the best-known phenomena of hydrodynamics. This periodic 
response to a static upstream velocity field defines an initial condition from which the 
turbulent wake ultimately evolves. In  the laboratory the flow becomes substantially 
three-dimensional after breakdown of the vortex street. In  a numerical simulation on 
the other hand the dynamics can be kept strictly two-dimensional. The vortex 
structures that made up the street then survive and evolve toward an asymptotic state 
of surprising dynamical simplicity. In  this paper we study the formation and sub- 
sequent breakdown of a vortex street in two-dimensional incompressible, nearly 
inviscid hydrodynamics. 

There is a large literature concerned with experiments on vortex shedding from a 
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bluff body. The early review by Roshko (1954) is still useful as an introduction. The 
later high-Reynolds-number results of Roshko (1961) are also of interest in connection 
with the present paper. A review of a recent conference on vortex shedding from bluff 
bodies has appeared in this journal (Bearman & Graham 1980). This review mentions 
present trends in the subject and contains several references to earlier work. 

The formation of a vortex street by vortex shedding has been simulated numerically 
using vortex methods by many authors. The random vortex method of Chorin (1973) 
was subsequently used by Ashurst (1979) to simulate the two-dimensional mixing layer 
downstream of a splitter plate. For general reviews of vortex methods for flow computa- 
tion the reader is referred to Clements & Maul1 (1975), Zabusky (1977), Chorin (1980) 
and Leonard (1980). 

The initial conditions that we consider consist of two vortex sheets of opposite sign 
discretized into point vortices. The sheets are in a rectangular flow box with periodic 
boundaries left and right, rigid boundaries top and bottom. A sinusoidal perturbation 
of small amplitude is imposed on the sheets. When the same perturbation is applied to 
both sheets, they roll up to produce a staggered array of finite area vortices, the von 
K&rmhn vortex street. An early investigation by Abernathy & Kronauer (1962; hence- 
forth referred to as AK) is frequently quoted in connection with this problem. We 
show here that longer runs with higher spatial resolution substantially alter their 
conclusions and suggest modes other than street formation. The pairing mechanism 
originally suggested by Taneda (1959) (see also Durgin & Karlsson 1971), whereby a 
vortex street doubles its longitudinal scale is seen convincingly for the first time in a 
numerical simulation. 

The breakdown problem has not received much prior attention in the literature. 
The reason is, as we have already mentioned, that a real vortex street is expected to 
break down to a fully three-dimensional flow, although experiments by Papailiou t 
Lykoudis (1974) do suggest that the street vortices persist for some time. Our interest 
in the purely two-dimensional problem is motivated by several considerations. First 
of all the corresponding numerical experiment for three-dimensional flow is only barely 
feasible with present-day computers. Of more interest are certain questions of principle, 
concerning the validity of simple scaling and universality in the presence of structures 
in the turbulence, that are equallyrelevant in two and three dimensions. Such questions 
are accessible to our computations. 

The numerical method used is the vortex-in-cell algorithm described by Christiansen 
(1973). Our version of the code and certain features of the algorithm were discussed in a 
previous publication concerned with the two-dimensional shear layer (Aref & Siggia 
1980, henceforth referred to as AS). For the initial instability studies we used a small 
grid (64 x 64) with a total of 4096 point vortices. The perturbation wavelength was 
chosen so that four or eight street vortices of either sign emerged. Since the flow 
pattern under investigation was itself periodic, it was judged admissible to have so 
few structures within the periodic boundaries. The results obtained for the initial 
instability are the subject of $2.  

For the study of vortex street breakdown, substantially larger simulations were 
performed, typically 16384 vortices on a 512 x 256 grid together with an initial 
perturbation that resulted in a street with 64 vortex regions of either sign. Runs on the 
small grid were also done for illustrative purposes. The breakdown of a vortex street 
leads to a two-dimensional turbulent shear flow. In this flow certain simple, clearly 
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identifiable modes dominate the dynamics. In $ 3 we f i s t  describe these modes qualita- 
tively. We then consider the question of scaling of the large-scale statistics such as 
mean velocity, velocity fluctuation intensities and Reynolds stress. Using dimensional 
arguments, we derive a scaling theory for this type of flow. The theory contains the 
growth exponent for the thickness of the turbulent region as a free parameter. Since 
the simulation conserves both momentum and kinetic energy it turns out that the 
scaling theory does not describe a statistically self-similar turbulence. In  particular, 
the scaling theory is not the spatial to temporal transcription of the traditional self- 
preserving plane wake. We check numerically that the scaling we derive is the applic- 
able one in the sense that the transcription just mentioned would lead to secular vari- 
ations in scaled plots of the average and mean square velocity. 

The detailed comparison between the numerical experiment and a one-length 
scaling theory is less favourable than in the smaller shear layer calculation described 
in AS. This could simply be due to a higher level of statistical noise because in the 
present case significant cancellations occur between contributions from vortex regions 
of Merent  sign. However, the dynamics of the vortex structures in the flow suggests 
much more interesting possibilities. The simulations indicate that when a vortex street 
breaks down in two dimensions the resulting flow exhibits two length scales with 
different power-law growth in time. These are (1) the width of a ‘central band’ or 
‘core region’ containing positive and negative macro-vortices in equal numbers which 
expands diffusively, i.e. as & where t is the time, and (2) outside this region a ‘gas’ of 
weakly interacting vortex dipoles, neutral vortex pairs that propagate with constant 
velocity and thus introduce a length scale that increases linearly with time. 

Section 4 contains discussion and conclusions, First we produce a kinetic argument 
to suggest that when a street of point vortices breaks down the momentum thickness 
must increase as &. This represents the slow growth limit of the scaling theory of $ 3. 
Then we investigate the role of the symmetry of the initial perturbation. Throughout 
$5 2 and 3 we only consider the case when the two vortex sheets roll up into a staggered 
array of vortices. In  $ 4  we examine the roll-up into symmetrically placed vortices. 
This symmetry is preserved by the equations of motion and the dominant mode now 
is a pairing of like signed vortices. This flow then resembles the early stages of a plane 
jet. The thickness grows linearly in time in this case which represents the fastest growth 
possible in our scaling formulation. These results lead us to discuss briefly the relations 
between our model flows and real plane wakes and jets. 

The nature of the dominant dynamical processes after vortex street breakdown 
leads us to question the long-term universality of the flow. In  particular, if we compare 
a flow started from uniform vortex sheets with a sinusoidal perturbation with another 
started from vortex sheets with an irregular distribution of circulation but with the 
same initial spacing and velocity defect, will the large-scale statistics be identical a t  
long times? We conclude $4 by relating our observations to previous conjectures of 
non-universality in two-dimensional turbulence. 

2. The initial instability 
The linearized stability analysis for two vortex sheets of opposite sign was discussed 

by AK who pointed out the interesting feature that the growth rates for a symmetric 
and an antisymmetric perturbation are equal. (This degeneracy is lifted if the sheets 
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FIGTJRE 1.  Formation of a vortex street for h/h = 0.375. Merging of 
' secondary ' vortices with ' primaries '. 

have a finite thickness (Zabusky & Deem 1971).) If one is modelling a wake on the 
computer starting from vortex sheets, one thus has to bias the initial condition to 
achieve the desired staggered street configuration. A convenient initial configuration 
is to impose the same small-amplitude sinusoidal perturbation on both sheets. The 
initial state is then characterized by the ratio h/A of sheet separation h to perturbation 
wavelength A. In  a real wake the value of h/A is set by the oscillations of the boundary 
layers on the body, and is conveniently expressed by the dimensionless Strouhal 
number based on the shedding frequency. In a real experiment the Strouhal number 
depends on the Reynolds number, in contrast to  anumerical experiment where we can 
vary h/A at will. 

On the basis of a series of numerical calculations, employing some 2 1 point vortices 
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Flame: 2. Continuation of figure 1. The waves on the lowest vorticity contour 
eventually get out of phase. 

per wavelength as a discretization of each sheet, AK concluded: 'There appears to  
be a fairly general p&brn followed in the formation of vortex streets from vortex rows 
which is independent of [hlh].' This conclusion is not borne out by our numerical 
experiments. On the contrary, it appears that there is a lower 'critical' value of h/h 
below which no street is formed, and an upper 'critical' value beyond which the 
initially formed street undergoes a pairing within each row to  a street of twice the 
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FIGURE 3. Variation of the momentum thickness 8 for the ‘ prototype’ of vortex street formation. 
The arrows mark the instants corresponding to the panels in figures 1-2. 

longitudinal scale. Presumably several such pairings can take place in succession for 
large h/h. The problem is complicated by the fact that a vortex street is not a stable 
configuration but rather a metastable state. Numerical errors, which resemble the 
background noise in a real flow, will therefore trigger instabilities of the street after a 
sufficiently long time. 

Figures 1 and 2 present a ‘prototype’ of street formation. The ratio h/h was equal 
to 0.375 and the figures show constant-vorticity contours at successive times. The 
contour levels in the top two panels of figure 1 were adjusted by the code to avoid 
crowding of contour lines. In all other figures in this paper the contour levels are set in 
the earliest panel and are unchanged for the remainder of the run. The set of levels 
used is always symmetrical about zero. The amplitude of the perturbation for figure 1 
was one-eighth of a grid spacing. The wavelength was chosen such that four vortex 
blobs of either sign should emerge. Initially we see that the sheets roll up into ‘primary’ 
and ‘secondary’ vortices, and that the secondaries then are absorbed into the pri- 
maries. The contour plots are of course slightly misleading. In reality the vortices are 
concentrated along winding curves representing vortex sheets. We have previously 
ahown examples of this for the roll-up of one vortex sheet (AS, figure 2, me also figure 
18 below). Contour plots smooth out this structure. Furthermore, low-vorticity back- 
ground ‘debris’ arising from the merging events is suppressed. We have continually 
checked that these shortcomings of our ‘flow visualization’ are not distorting our 
conclusions. (These checks are described at  the end of this section.) For display 
purposes, however, we have generally found the contour plots superior to high/low 
intensity point plots of the vortices. The full length of the flow box is shown in the 
figures but not the full width (for the 64 x 64 grid the flow box is square, for a 612 x 256 
grid it is rectangular with aspect ratio 2 and so on). The width is continually adjusted 
by the plotting routine so that only the part of the flow box that actually contains 
vorticity is reproduced (except for the two bottom panels in figure 10 as explained in 
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FIQTJRE 4. S w  of runs performed here (tall arrows) and in Abernathy & Kronauer (1962) 
(short arrows). Solid circles correspond to (metastable) vortex streets. Open circles correspond to 
streets that were unstable to a pairing within each row. An error baz appears for h/A = 1.0 since 
the street after pairing was rather irregular. 

the caption for that figure). Thus the widths of individual panels in our figures are 
generally smaller than the distance between the rigid boundaries. 

Figure 3 shows the temporal variation of the momentum thickness 8 of the flow in 
figures 1-2. To define 8 we first calculate the 2-averaged longitudinal velocity Z(y, t ) .  
Then 

(1) 

where the integral on y runs from bottom to top; y = 0 denotes the centre-line, and we 
always imagine our frame of reference chosen so that the velocity vanishes far above 
and far below the band occupied by the vortices. The basic unit of length is chosen 
such that the distance between the rigid boundaries (y = & 0.5) is unity. The arrows 
in figure 3 correspond to the panels shown in figures 1-2. From figure 3 we see that after 
the initial transient (secondary vortices merging with primaries) the width settles 
down to a constant value with small oscillations. At the level of contour plots these 
oscillations show up as waves on the outermost contours. (The related phenomenon of 
waves on the bounding curves of uniform vortices has been studied by Deem & 
Zabusky (1978) and Zabusky, Hughes & Roberts (1979) using the method of ' contour 
dynamics'.) Initially these waves are completely in phase along the street (top three 
panels of figure 2). In  the bottom panel of figure 2 the waves have gotten out of phase. 
Shortly thereafter the street structure will begin to break down. 

It is instructive to vary the ratio h/A (as did AK) and study the influence of this 
parameter on the initial instability. However, we must caution the reader that laminar 
stability calculations with the type of code used here should not be blindly trusted 
(cf. Christiansen 1973 and AS). First, the vortex-in-cell method leads to a velocity 
anisotropy between two point vortices. Second, the imposition of a grid effectively 

W )  = J&'ii(Yl t ) / W  t ) ,  
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FIGURE 5. Variation of the momentum thickness 0 for h/h = 0.3125. 
Note the long initial transient period compared to figure 3. 

means that the vortex sheets have a finite width, i.e. there are other parameters in the 
problem than h and A. We choose to present our results first and then discuss why we 
believe them to be trustworthy. 

Figure 4 summarizes the runs performed. The initial value of h/A is plotted along the 
abscissa and our runs are shown by the tall arrows. The ordinate gives the ratio of 
transverse to longitudinal spacing for the emerging street (if any). The range in h/A 
from 0.1 to 1.0 was explored. The values of h/A for the numerical experiments in AK 
are shown by short arrows. As we shall see, all but one of them fall in the range whe? 
we see no vortex street. To appreciate the difference between our calculations and 
those in AK we note that the dimensionless time variable AUt/h, where AU is the 
initial velocity deficit, waa approximately unity where the runs in AK were terminated. 
In the work reported here the value of AUt/h  was of order 10 at the end of a run. This 
together with the improved spatial resolution is the main reason for the differences in 
our conclusions. 

In  the range 0.3 5 h/A 5 0.6 the vortex street formed more or less as in figures 1-2. 
The traces of 0 218. t for the two cases h/A = 0.3125 and h/A = 0.563 are shown in 
figure 5 and 6 respectively. For h/A = 0.3125 the initial transient period has become 
much longer than for h/A = 0-375 (figure 3). The secondary vortices rotate about the 
primaries at least three times before merging. For h/A = 0.563 the slow modulation of 
the e ( t )  trace suggests an incipient instability of the wide vortex street. Both observa- 
tions may be taken as precursors of the qualitative changes that take place when h/A 
is either increased or decreased beyond the range 0.3 5 h/A 5 0.6. It is intemsting to 
note that the lower limit of this range coincides approximately with the celebrated 
KArmAn ratio, 0.281 ... (see Lamb 1945). This is probably entirely fortuitous, but it is 
the only instance where a ratio of transverse to longitudinal scale of this size appears 
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FIGUBE 6. Veriation of the momentum thiakness 8 tor h/A  = 0.563. Note the slow modulation 
that indicates an incipient instability. 

in any significant way. The vortex streets seen in the simulation all have blob separa- 
tion ratios that are 1 - 6 2  times larger than von KCtrm&n’s value. Of come our streets 
consist of finite-area vortices and not points as von K k m h  assumed in his analysis. 
The stability problem for a vortex street with finite-size vortices is not fullyunderstood 
(cf. Christiansen & Zabusky 1673; Zabusky 1977). 

For runs with h/A = 0.76,0.876 and 1.0 a distinctive new mode appears. The second- 
ary vortices, which decrease in size as the initial sheets are placed further apart, now 
rapidly merge with the primaries producing a street which accurately retains the 
values of h/h and 6 of the initial sheet configuration. As shown in figure 7 this street is 
unstable to a pairing motion within each row leading to a new metastable (albeit rather 
irregular) street with twice the longitudinal spacing. In figure 4 the initial wide street 
is shown by open circles, the (short-lived) paired street by solid circles. The discovery 
of a pairing mode is related to results obtained by Taneda (1969) who published flow- 
visualization pictures indicating a structural transition of this type. In the experi- 
ments, which are performed at  much lower Reynolds number, the ratio of longitudinal 
scales of the street before and after the transition is not precisely 2 : 1 and is Reynolds- 
number dependent. This suggests a mode wherein the initial street structure is first 
entirely obliterated. The unstable wake thus produced is then unstable to the forma- 
tion of a vortex street of larger scale. In terms of vortep structures it seems that in the 
experiments the street vortices become elotigated and overlap and two wide vortex 
sheets result. These then roll up into the secondary vortex street. The ratio of longi- 
tudinal scales for this type of mechanism clearly need not be exactly 2 : 1. We propose 
that the simpler pairing process seen numerically at high Reynolds number is related 
to the more complex modes detected in the experimeqts. The occurrence of a pairing 
within each of the well-separated rows is furthermore n a t m l  in view of the pre- 
dominance of this basic instability for an isolated shear layer (Lamb 1946; Winant & 
Browand 1974). Christiansen & Zabusky (1973) claimed to see the inviscid ‘Taneda 

15 F L M  109 
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FIQVRE 7. The ' Taneda pairing mode' for a wide vortex street, h/h = 0.75. The merging of 
' seoondaries' with ' primaries' (figure 1) haa already taken place before the top panel. The result- 
ing paired street is irregular and short-lived. 

pairing mode ' in numerical experiments similar to those performed here although their 
initial conditions were somewhat different. However, they considered a short segment 
of the street with at most four and usually only two large vortices of either sign before 
pairing, thus making the regularity of the street after pairing impossible to assess. 

Following the enstrophy (the sum over all sites of the grid vorticity squared) as the 
street evolves through the pairing in figure 7 illustrates an interesting point about the 
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FIGURE 8. Variation of the grid emtrophy with time for the Taneda pairing. The m o w s  mark 
the instante oorresponding to the panels in figure 7. Note the sharp drop in enstrophy during vortex 
merging. 

nature of the dissipation in the vortex-in-cell algorithm. This is shown in figure 8, 
where the four arrows mark the times corresponding to the panels in figure 7. A sharp 
drop is observed in the enstrophy as the vortices pair. In the absence of coalescence 
vortex blobs appear to be stable entities and do not grow diffusively over the duration 
of our runs. The enstrophy (calculated from the grid vorticity) is constant once the 
initial vortex sheets roll up and the fine-scale structure within each blob has been 
washed out by the effects of the finite grid size and time-stepping errors. (This relaxa- 
tion can be clearly seen in figure 18.) When two blobs subsequently merge, however, 
irrotational fluid is entrainedand, when itget&ulled out into regions too fine toresolve, 
the enstrophy decreases. Thus our code behaves very much like a high-Reynolds- 
number two-dimensional fluid. An enstrophy ‘cascade ’ (Batchelor 1969; Kraichnan 
1967) only operates after the entrainment of irrotational fluid as argued in AS. Vortex 
merging is an ‘irreversible ’ event; hence it is accompanied by dissipation. 

At the other extreme of the h/h range the secondary vortices are strongly influenced 
by the primaries of opposite sign and patterns of periodic motion ensue. An example 
is provided in figures 9-10 (h/A = 0.24) with the corresponding O(t )  trace in figure 11. 
The arrows in figure 11 mark the times corresponding to the panels in figures 9-10. 
The secondary vortices are captured by the primaries of opposite sign and transported 
once around. Since the dipoles formed have a small net circulation, the two rows must 
separate (in order to conserve momentum) and the momentum thickness increases 
dramatically. The cycle shown in figures 9-11 may in principle be repeated, but 

15-2 



446 H .  Aref and E.  D. Siggia 

numerical errors quickly accumulate and destroy the periodicity. In  practice we have 
only observed a fraction of the second cycle before the regularity broke down. A vortex 
street in the sense of figures 1-3 never emerged. For h/h = 0.1 the amplitude of the 
'swingabout' mode has become so large that the nearly neutral pairs leaving the 
central region collide with the top and bottom walls of the flow box. 

The numerical experiments of AK are mainly in this h/h region, figure 4. With the 
wisdom of hindsight, one can actually see the initial stages of a mode like figures 9-10 
in figure 5 of AK. This is encouraging because it shows that the results are not unduly 
influenced by the velocity anisotropy (which is of course not present in AK) or by the 
level of discretization (20 vortices per wavelength in AK m. approximately 500 in our 
calculations) or by the boundary conditions (unbounded flow in the y direction in AK, 
rigid boundaries here). It is also clear directly from the flow pictures that effects of the 
velocity anisotropy must be minimal. It was shown in AS that the misotropy is vir- 
tually absent for vortex separations of more than 2-3 grid spacings and, as the figures 
here show, the main vortices of the street are separated by at least 5-10 grid spacings. 

FIGURE 9. Periodic motion without street formation, hlh = 0.24. Here the' secondaries' 
never manage to merge with the ' primaries'. 
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FIGURE 10. Continuation of figure 9. The bottom two panels were produced much wider by the 
plotting routine, indicating that vortex 'debris' was left behind ($2).  The magnitude of this 
vorticity was less than the lowest vorticity contour level, and the panel was reduced in size for 
reproduction. 

Except for the finite size of the flow box, the simulations should have the property of 
producing an identical street with all dimensions scaled by 2 if we rescale the initial 
configuration according to h + &h and A+ &A. Such a run was performed for the case 
h/A = 0.375, and was in fact used as the initial condition for the vortex street break- 
down calculations described in f 3. The resulting street may be seen in the top panel of 
figure 12 and it is easily verified that the street width in grid spacings is accurately one 
half the width in figure 2. A much larger calculation resulting in 64 street vortices of 
either sign (see Q 3) also gave the expected scaled value of the street width. 

The thickness of the vortex sheets (introduced by the grid) does have a small effect 
on the resulting instability although this was not studied systematically. For example 
we have observed that details of the periodic motions in the small h/A regime may vary 
when the same flow is time-stepped on a 642 and a, 1282 grid. Zabusky & Deem (1971) 
used a finit:-difference algorithm to study the initial roll-up of two thick sheets initial- 
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FIGURE 11. Variation of the momentum thickness 8 for one period of the ‘ swingabout’ mode. 

Thearrowsmark theinstantscorresponding to the panels in figures 9-10. 

ized to give an approximately Gaussian velocity profile. They found the ratio of 
transverse to longitudinal vortex spacings to be 0.47 (as corrected by Zabusky 1977) 
also at least 1.5: times the von K k m h  ratio and in the same range as we find with thin 
sheets (cf. figure 4). 

To conclude this section, we return to the question of the appropriateness of vorticity 
contour plots as a means of flow visualization. We have monitored two quantities for 
the flows shown in figures 1-3 and 7-8. The first of these is a measure of the relative 
magnitude of the vortex ‘debris ’ thrown off as ‘ arms ’ (cf. figure 19) during merging 
events. We calculated as a function of time the number of elementary point vortices of 
either sign that were outside the lowest contours. (This is arbitrarily called debris 
although some of it does in fact follow the structures in their motion.) If this number 
increases with time, more and more elementary vortices are being transferred from 
the structures to the background which, as we have noted, is suppressed by the contour 
plots. For the street roll-up in figures 1-3 the number of vortices in the debris con- 
stituted approximately 30 yo of the total. The lowest contour corresponds to a density 
of about one elementary point vortex per grid square. For the Taneda pairing in 
figures 7-8, the debris increased to about 40 yo of the total and the lowest contour wm 
drawn slightly higher. The actual percentages are not very meaningful since they 
depend on our definition of the lowest contour and also on the mesh size of the under- 
lying grid. The important thing to note, especially in the turbulent regime, is that the 
structures apparently persist. (We shall return to this in $3.) 

We should also point out that, although 40 per cent ‘debris’ may sound significant, 
the dynamical importance of this background vorticity is probably not so large. The 
reaaon is that the background vorticity is a mixture of point vortices of both signs. 
Hence the net circulation of a finite area of this debris is reduced by cancellations 
between oppositely signed points. Indeed, the sum over all sites of the absolute value 
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FIQWRE 12. Breakdown of avortex street for h/h = 0.376. The top panel is a scaled version of the 
street in figure 2. The vortex regions have been labelled and followed using intermediate pictures. 

of the grid vorticity decreases in time due to elementary vortices of one sign being 
mixed into regions or structures of the opposite sign. As one would expect, consider- 
able mixing takes place during roll-up when vortices from one sheet are advected across 
the midline and become wound up in the street vortices resulting from the other sheet. 
This effect is hard to see in a contour plot with fixed levels. For both the runs in 
figures 1-3 and 7-8 the relative drop in the calculated sum was only about 10 yo. This 
number is again dependent on the mesh size of the grid. Varying the mesh size by a 
factor of 2 either way changes the mixing by a t  most one percentage point. For the 
background on the other hand, the sum of absolute values of grid vorticity on the 64* 
grid was approximately 20% of the total at the end of the run. When the grid was 
coarsened to 32# this fraction dropped below 10 yo, which indicates considerable mixing 
of opposite signed vortices in the background. 

3. Breakdown of a vortex street 
Figures 12-14 show the results of allowing numerical errors to accumulate in time 

and trigger the instability of the street. As mentioned in 2 the street shown in the top 
panel of figure 12 is a scaled version of the one formed in figures 1-2. The calculation 
displayed in figures 12-14 is not in itself large enough to give a realistic picture of the 
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FIGURE 13. Continuation of vortex streat breakdown from figure 12. 
Doublets, triplets and neutral pairs form. 

two-dimensional turbulent shear flow that evolves. Statistics such as x-averaged 
profiles calculated for this flow would have little meaning in view of the small number 
of vortex structures within the periodic boundaries. However, these figures do bring 
out two essential dynamical modes that have been seen in much larger simulations. 
These are the merging of like-signed vortex regions, and the formation of neutral pairs 
(vortex dipoles) that then translate away from the central line. In figures 12-14 the 
vortex regions in the street were labelled A-H, J-R and, using many more pictures 
than we show here, their motion was tracked. In later stages of evolution we clearly 
see the formation of doublets (AB, NP), even a triplet (EPG), and also the escape of a 
neutral pair (CL). 

We have performed two large simulations using 16 384 vortices on a 512 x 256 grid. 



A B  

In the first of these two regularly spaced rows of identical point vortices were allowed 
to roll up into a vortex street with 64 finite-area vortices of either sign, a scaled version 
of the streets in figures 1-2 and 12. The street persisted until the dimensionless time 
variable AUt/h (defined in 8 2) had a value of the order 100. The instability which then 
intervened started at  a specific point along the street and was for some time completely 
localized around that point. Eventually the disorganization spread to the left and right 
of the instability centre. The dynamics after breakdown was dominated by the modes 
exemplified in figures 12-14. Except for the amalgamation events already noted the 
vortex blobs from the original street persisted until the end of the simulation. It was 
not difficult to follow individually the 128 vortex regions as the system evolved in 
time. It was possible to keep track of pairings of like-signed vortices and to record as a 
function of time the number of doublets and triplets. Only very rarely would fractional 
circulations result. The accuracy with which doublets and triplets apparently acquired 
twice and three times the circulation of the street vortices was noteworthy. There 
were several instances of doublets of opposite sign which, having been formed through 
entirely different sequences of events, ultimately came into close contact in an other- 
wise vortex-free region and propagated in a straight line as a neutral pair. 

In the other large simulation, we initialized two random vortex sheets of opposite 
sign. The constituent point vortices all had the same magnitude but their positions 
along the two sheets were random. The velocity deficit and the sheet separations 
initially had the same value as in the first large simulation. The roll-up of c o m e  did 
not produce a vortex street but rather two bands of finite-area vortices with random 
circulations. The resulting flow was similar to the previous one in that clearly identifi- 
able structures emerged and persisted for the duration of the run. The details of the 

F I O ~  14. Late stages of vortex street breakdown, AUt/h  z 180. 

F I O ~  14. Late stages of vortex street breakdown, AUt/h  z 180. 
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t / 

Time 

FIGURE 13. Variation of (a) tlie niorrrentum tliiclaiees 0 and (b)  tlie variance of y co-ordinates of 
the positive rort ices for the turbulent flow I esultilig from two random vortex sheets. The arrows 
correspond t,o tlie instants when 8/Bi= 2 J2,4.442,8,8 J Z ,  where Of is tlie initial momentum 
thickness. Time averages of scaled profiles were initiated at these times. 

dynamics of these structures, however, was markedly different owing to the altered 
distribution of vortex blob circulations. With random initial conditions formation of 
neutral pairs is suppressed since the probability that two contiguous vortex regions 
have circulations of the same magnitude but opposite sign is very small. Merging of 
like-signed vortices still took place much as before but the distribution of circulations 
remained broad. The main impression was of a diffusively spreading assembly of finite- 
area vortices. The momentum thickness grew roughly as ~ (figure 15 a), the variance 
of y co-ordinates of either positive or negative vortices grew linearly in time, figure 
15 (b). (The significance of the arrows in figure 15 is explained later.) 

A quantitative measure of the persistence of vortex structures is given by the ratio 
of background to total rorticity mentioned in $ 2. For the illustrative run in figures 12- 
14 the vortices not accounted for within the lowest contour increased steadily to 
almost 50 yo of the total number. We have already argued that the dynamical signifi- 
cance of the background is much less than this percentage suggests. For the street 
shown in the top panel of figure 12 the fraction of debris (as defined in $2) is already 
30 yo. Furthermore, point plots of the vortices reveal clearly identifiable structures 
during the entire run. For the larger simulation a t  least two-thirds of the number of 
vortices that fell within the lowest contour level during the vortex street stage re- 
mained within that level and thus were associated with structures for the duration of 
the run. In particular, there were well-defined vortex structures present, containing a 
substantial fraction of the total vorticity, during the time when the scaling checks in 
figures 16-1 7 were performed. 
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The turbulent flow that results from either of the above initial conditions is tradition- 
ally expected to scale according to a set of similarity laws known aa self-preservation 
theory (Monin & Yaglom 1971 ; Tennekes & Lumley 1972). For the temporal evolution 
of a single infinite sheet the scaling forms for profiles of z-averaged velocity, velocity 
fluctuation, Reynolds stress etc. may be written down at  once using dimensional 
analysis. The only two available quantities are the velocity jump AU across the sheet 
and the time t .  For example, the thickness of the unsteady shear layer that evolves, 
and in fact any other length scale, is predicted to grow proportionally with AUt. This 
simple scaling theory was discussed in detail in AS and its limits of validity were 
pointed out. 

For the case of two sheets we have at  our disposal three quantities: the initial velocity 
deficit AU,  the initial separation of the sheets h and the time t. We choose our frame of 
reference such that the velocity vanishes above and below the two layers and initially 
equals - AU in between. Dimensional analysis and the wumption of a single trans- 
verse length scale implies that the x-averaged longitudinal velocity G(y, t )  has the 

Here ,? is some exponent aa yet undetermined, f is a universal function in principle 
calculable from the equations of motion and 8 is the momentum thickness of the flow, 
defined in (1). Similar aasumptions for 8 imply 

(3) 
For 8 actually to grow we must have a > 0, and we shall see that the Cauchy-Schwartz 
inequality restricts a to a < 1. 

8 = const. x (AUt)aK-a. 

Conservation of linear momentum leads to the requirement that 

Jdy;lz(y, t )  = - (Au)l-P ( h / W J W ( l l ) ,  (4) 

is a constant ( = - hA U). Substituting ( 3 )  and collecting powers of 1,  we see that /3 = a ; 
hence 

(so that equation (1) requires f(0) = Jdqf (7 ) ) .  Scaling of the velocity correlation 
function ZV, which equals the Reynolds stress since V = 0, follows immediately from 
( 5 )  and Reynolds’ equation 

Thus, 

where the function fx is related to f in ( 5 )  by 

NYYt)  = - A w / @ f ( Y / e )  ( 5 )  

a;ii/at = -aa~/ay. (6) 

= AU(h/ t ) f , (y /@,  (7) 

The 2-averaged kinetic-energy density, 

satisfies an equation similar to (6) for inviscid flow: 

aZ/at = - a(u(e +p)) /&,  (10) 

where p is the pressure divided by the (constant) density. Ignoring viscosity, the y 
integral of Zis conserved, and the ansatz, 
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Z(y, t )  = (AU)2-Y ( h / t ) ~ P ( y / O ) ,  ('1) 

leads to y = a in complete analogy with the derivation of (5 ) .  It is natural to assume 
that p a n d >  both scale in the same way as 2. We then have 

v2= (A w2 (h/O)f,(Y/O), (12b) 

with two new universal functions f I, and fi. 
The proposed scaling theory consists of equations (3), (5), (7), (12a) and (b). It has 

the required properties of conserving both linear momentum and kinetic energy, and 
the interesting formal property of having the exponent a in equation (3) as a free 
parameter. In  this scaling the dimensionless ratio 

so that the velocity fluctuations overpower the velocity deficit in the asymptotic state. 
Hence, the scaling theory that we propose does not lead to a statistically self-similar 
turbulence. In  the traditional self-similar scaling of both the plane wake and the plane 
jet the ratio (13) is by definition of order unity. Another way of stating (13) is to note 
that an intrinsic Reynolds number based on the amplitude of the velocity fluctuations, 
RA= O(G)*/v, where v is the kinematic viscosity, will increase to infinity with time, 
while the large-scale Reynolds number, R = 85/v ,  remains constant. Furthermore, 

(14) 

which by the Cauchy-Schwarz inequality provides a rigorous bound of a < 1 for the 
free exponent. (Self-similarity would require a = 1.) Finally, 

(15) 

- -- 
uq(u2v2)* 2: s/t N tu-1, 

- 
u v p  -N e 2  j t  21 t 2 U - 1 ,  

which strongly suggests that for a turbulent flow a >/ 0.5. Otherwise the magnitude of 
the Reynolds stress would decay relative to the mean flow, i.e. the velocity deficit at  
y = 0. (Here self-similarity would require a = 0.5.)  
As we have already remarked, the velocity fluctuations in a plane wake or jet in the 

laboratory are fully three-dimensional. Even for an arbitrarily small viscosity, energy 
is dissipated at a rate set by the large scales. In  a two-dimensional flow, however, if 
we assume small-scale isotropy, the energy dissipation rate tends to zero with the 
viscosity since the mean square vorticity is bounded by its initial value. The conven- 
tional self-similar plane wake can legitimately be transcribed from evolution with 
downstream distance to evolution in time; it follows from equation (2)-(7) if we insist 
that the Reynolds stress scale as U2(y = 0, t )  (i.e. a = 0.5). Equation (12a) and (b) 
would of come no longer hold. 

In the remainder of this section we compare statistics from the simulation started a 
two random sheets with the scaling theory derived above. The arguments in $ 4  suggest 
why this case is the most favourable one for comparison with the scaling theory. In 
figure 16 we check the scaling relation (5) for the mean velocity. The different symbols 
refer to profiles at values of Olei = 2 J2,4,4J2,8 and 8 4 2  where 0,;s the initial momen- 
tum thickness. As in AS, each profile is calculated as a time average started when 8/8, 
first reached one of the values listed and terminated when 8 had increased by at most 
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FIUIJRE 16. Test of the scaling relation, equation ( 5 ) ,  for the mem velocity profile. 
conditions were two random vortex sheets. Values of 8/8, ere: ----, 2 J2; -, 
A. 8; 0 , 8 4 2 .  

The initial 
4; 0 9 4 J 2 ;  

25 yo. The arrows in figure 15 mark when each of the time averages used for figure 16 
was initiated. The agreement with equation ( 5 )  is satisfactory except for the latest 
time. This is reasonable both because of poorer statistics and the greater importance 
of boundary effects. Note that figure 16 only checks the functional form of equation 
( 5 )  and not the value of the exponent a. In  fact, 8 need not increase a8 a fixed power of 
time for the data to collapse onto a single curve in figure 16. 

In  figure 17 we check the scaling prediction (12b). The symbols have the same mean- 
ing as in figure 16. The agreement with equation (12b) is satisfactory, although not 
nearly as good as in the corresponding plot for a single (shorter) shear layer in AS. We 
ascribe this to the higher level of statistical noise in the present problem due to 
cancellations of contributions from vortex regions of opposite sign. It should be noted 
that if a different power of 8 were used in the prefactor in equation (1  2 b) (say 1/82 as in 
the self-similar, plane wake scaling) secular variations in the peak amplitudes in 
figure 17 would be readily apparent. 

4. Discussion and conclusions 
In  an attempt to clarify some of the trends observed in the large simulations we 

have constructed and run a point vortex code that computes interactions pairwise 
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I . . . . . . . l . . .  
1.5 1 .o 0-5 0 -0.5 -1.0 -1.5 

Y I8 
FIGURE 17.Test ofthe soalingrelation, equation (12€4, for the fluctuetions of transverse velocity. 
Same initial Conditions &B described in figures 16 and 16. The symbols correspond to those used in 
figure 10. 

from the exact Green’s function appropriate to boundary conditions periodic in 2 and 
unbounded in y. The unit of length is now chosen equal to the horizontal repeat dist- 
mc8. In this representation of the full problem we are exploiting our earlier observa- 
tion that the vortex blobs that form the street persist as organized entities into the 
turbulent regime. The merging of like-signed blobs is suppressed, although it could be 
incorporated by artificially amalgamating points closer to each other than some 
critical radius. We initialized this code from a slightly perturbed ‘street’ of 128 point 
vortices of equal magnitude (64 of either sign). After breakdown of the street there 
was a clear separation between a central core of randomly moving point vortices and a 
nearly non-interacting ‘ gas ’ of neutral pairs that were thrown off on either side of the 
core and propagated with constant velocity to y = & 00. This result leads us to develop 
a simple kinetic theory for the evolution of this ‘turbulent flow’. 
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If the point vortices have strengths k,, j = 1, . . . , N, the x-averaged velocity profile 
becomes 

where H is the step function (EZ(7) = 1 if 7 > 0 and zero otherwise) and y,(t) is the 
y co-ordinate of vortex j. It follows that 

which is conserved even for periodic boundaries in x (Birkhoff & Fisher 1959), so that 

It is clear from this expression that a neutral pair propagating outward from the 
centre-line does not contribute directly to the momentum thickness. To see the 
linearly growing scale coming from the ballistical pairs we need to measure the width 
of some other profile, e.g. the energy density or a scale based directly on the vorticity 
distribution. Thus, to resume the discussion of scaling in 9 3, for breakdown of a regular 
vortex street we expect to see violations of equation (12b) in the wings of the profile. 
However, statistical fluctuations were so large (cf. figure 17) that a convincing scaling 
plot could not be produced. 

By adopting a simple kinetic description it is possible to argue that not only does 
B(t)  not grow as fast as t ,  but in fact B(t)  21 fl. We start from the observation that the 
equations of motion also conserve the 2 component, Z,k,x,, of the total impulse. On 
the basis of the observed dissolution of the flow into a core region and a grts of vortex 
pairs propagating outward from the core, we split up the sum of k,x, into two contribu- 
tions, one from the core and one from the pairs. The contribution from the pairs 
vanishes. For a pair moving upward must have the positive vortex on the left and the 
negative vortex on the right, whence Ax c 0. Similarly Ax > 0 for a pair moving down- 
ward. On average we expect cancellation by symmetry. Thus the total x-impulse is 
carried by those vortices that remain in the core region. Let their number be nc(t). If 
the r.m.s. separation between neighbours in the core is denoted drme we have 

x k*X, = (X k , q c o r e  21 n , L ,  (19) , , 

Next, we write down for n, a kinetic equation in a ‘relaxation time approximation’, 
viz . 

h , / &  = -n&. (21) 

The time constant T must be a typical time scale for motions within the core region, i.e. 

(22) 

&ac/& = -yn! (23) 

1/r 21 kid:,, 1: nt, 

where k is some average magnitude of vortex strengths. Now from (21) 
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where y is a constant parameter. Equation (23) has the asymptotic power-law solution 

- ( 2 y t ) t .  (24) 

To complete the argument we split the y impulse, equation (17), into core and pair 
contributions. Again by symmetry, this time of the angular distribution for the emitted 
pairs in either half-space, the pair contribution vanishes on average. Hence, identifying 
8 with the avefage spread in y co-ordinate of the core vortices (cf. equation (18)), 

(F  k5y5)mm ‘Y kn,8 = const., 
3 

which with (24) gives 
e- t ) .  

This result is consistent with (20) because the average x separation of core vortices 
used to estimate dms is seen to scale with the same power oft as the average y separation. 

The correct growth exponent for 8 for breakdown of a street of point vortices all of 
the same magnitude need not be precisely 0.5 since the derivation given above was 
obviously rather crude. Let us mention just one source of error: In  deriving equation 
(26) we used two statistical symmetries. The first of these (symmetry between pairs 
emitted upwar& and downwards) is exact. The second symmetry (equal number of 
pairs emitted upward at an angle v and at an angle - v to the vertical) is not necessarily 
true. In  fact the direction singled out by the velocity deficit breaks this symmetry. 
Hence equation (25) is only an approximation. However, we expect the precise value 
of the growth exponent to provide an upper bound for the growth rate of vortex streets 
with distributed vortices. The reason is that finite-area vortices of like sign may merge 
and that reduces the probability of pair formation. Consequently n, decays more 
slowly for a street of distributed vortices, and this would be reflected in a slower growth 

An interesting inadequacy of the derivation of equation (26) relates to the question 
of distinguishing ‘wake ’ from ‘jet ’. This problem arises since at the level of two parallel 
vortex sheets a ‘wake ’ may be transformed intoo a jet-like flow by applying a Galilean 
transformation that compensates for the uniform mean stream. Going back to equation 
(19) we see that the case 

of e. 

5 kp5 = 0 (27) 

3(XYY) = - a x ,  -?I) (28) 

3 

merita special consideration. If we perturb the two sheets so that the discrete symmetry 

for the vorticity is not broken, the equations of motion will preserve it for all future 
times. One sheet will now evolve as the image of the other in the line y = 0, i.e. this line 
could be replaced by a solid surface. Thus it is clear that no vortex of either sign can 
cross the midline and in particular no neutral pairs can escape the core. The only 
remaining process for thickening of the layer then is the merging of like-signed vortices 
as in a single shear layer. Crudely speaking this leads to 8 increasing linearly in time. 

Figures 18-19 show the evolution of two regular vortex rows perturbed with a 
sinusoid that respects the symmetry (28). Since the vortices of opposite sign do not 
mix at all, point plots are used. In the top two panels of figure 18 the two sheets roll up 
into spirals. As the flow evolves the fine-scale features of the spiral arms are washed 
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FIUURE 18. Evolution of two vortex sheets with an initial perturbation to resemble a plane jet. 
Point plots of vortices are used. The roll-up into spirals and the gradual obliteration of the spiral 
arms is shown. 
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out. By the time the pairing instability between like-signed vortex regions begins 
(bottom panel in figure 18) the spiral structure has been obliterated. The pairing pro- 
ceeds (figure 19) and reduces the number of vortex blobs in each row from eight to 
four. Spiral structure is recreated on a larger scale by the vortex pairing. One more 
pairing was observed before numerical errors accumulated and broke the symmetry, 
equation (28). 

It should be apparent that when a two-dimensional wake or jet is modelled numeric- 
ally as an initial-value problem in a horizontally periodic box the only way to distin- 
guish the two flows is through the symmetry of the initial instability. The conventional 
vortex street configuration results from an asymmetric shedding process commonly 
observed in the wake of a cylindrical body. The symmetrical street (figures 18-19) 
on the other hand has been observed in plane jets (Beavers & Wilson 1970) and the 
three-dimensional analogue is observed in an axisymmetric jet. The symmetry, 
equation (28), may then influence the subsequent evolution by favouring or 
suppressing certain dynamical modes. Thus we see pair emission in our two- 
dimensional wake, but, assuming noise did not destroy the symmetry, we would only 
expect to see vortex pairings in the jet (cf. Crow & Champagne 1971). We have argued 
that as a result the momentum thickness will increase as t4 in the first case and as t in 
the second. We do not believe (as suggested by Zabusky & Deem, 1971) that the 
details of the initial vorticity profile (i.e. the explicit form of the profile &) a t  t = 0) 
constitutes a valid distinction between jet and wake in the context of two-dimensional, 
numerical simulations. Any profile that is perturbed in the direction of a vortex street 
will evolve ultimately into a turbulent wake. The initial vorticity profile may influence 
the vorticity distribution within individual blobs, but it is hard to see from our results 
why (assuming minimal universality) it would affect the scaling behaviour of the 
turbulent flow. 

If the initial vortex regions have a broad distribution of strengths the derivation 
given above is not relevant. This situation arises when we follow the roll-up of two 
random vortex sheets of opposite sign. The probability of forming neutral pairs is now 
virtually zero and there is no basis for splitting up the components of the impulse into 
core and pair contributions. As mentioned in $ 1, it is tempting to infer a breakdown of 
universality in the traditional sense. It is easy to set up two pairs of vortex rows, one 
pair regularly spaced with a sinusoidal perturbation, the other random but with the 
same separation and initial velocity deficit. The two turbulent shear flows that ulti- 
mately result will thicken in fundamentally different ways because of the importance 
of pair formation in the first case and its absence in the second. For the breakdown of a 
street we expect two length scales to be necessary for scaling of the large-scale statistics. 
For the random sheet initial condition the scaling theory of $3 seems adequate. 

The possibility that two-dimensional turbulence is non-universal was already 
discussed by Kraichnan (1967) for the isotropic case. Recently Delcourt & Brown 
(1979) suggested on the basis of numerical experiments that the growth rate of a two- 
dimensional shear layer depends sensitively on the distribution of circulation per unit 
length of the layer. Whether this dependence leads to a breakdown of universality or 
just to very long relaxation times could not be unambiguously decided. In  the case 
studied here, which we shall refer to as the two-dimensional wake, however, the growth 
rate of the momentum thickness can be linked directly to the presence or absence of a 
distinct dynamical process. It appears therefore that this flow provides the most 
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promising testing ground for the idea of universality (in two-dimensional turbulence). 
We believe on the basis of our numerical experiments that the asymptotic statistical 
state of the two-dimensional wake depends on the distribution of circulation integrals 
or equivalently on some of the higher-order vorticity correlations. This question 
probably cannot be completely settldd by performing ever larger numerical simula- 
tions, although a vortex code which retains the circulation integrals i s  the appropriate 
type of code for addressing it. In particular, one may argue that the emission of neutral 
pairs is only transient and will come to an end as soon as the merging of like-signed 
vortex regions has been operative fur some time. In  this argument a broad distribution 
of circulations will then ensue for both the street and random sheet initial conditions 
and the same asymptotic state will be reached. We hope the results reported here 
will stimulate analytical work on the problem. 
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